TEKNOFEST
HAVACILIK, UZAY VE TEKNOLOJİ FESTİVALİ

ROBOTAKSİ – BİNEK OTONOM ARAÇ YARIŞMASI
KRİTİK TASARIM RAPORU

ÜNİVERSİTE:
İstanbul Teknik Üniversitesi

TAKIM ADI:
İTÜ Güneş Arabası Ekibi

TAKIM ID:
#47201

TAKIM LİDERİ ADI SOYADı:
İsmet Atabay

AKADEMİK DANIŞMAN:
Dr. Öğr. Üyesi Alper Tolga ÇALIK
İÇERİK

1. Takım Organizasyonu .. 4
 1.1 ITÜ Güneş Arabası Ekibi ... 4
 1.2 Proje Zaman Planı ... 6
2. Ön Tasarım Raporu Değerlendirmesi .. 6
3. Araç Özellikleri .. 8
 3.1 Elektrik Sistemleri .. 8
 3.1.1 Kendi Tasarladığımız Tekerlek Içi Motor 8
 3.1.2 Batarya ... 9
 3.1.3 Araç Içi Haberleşme ... 9
 3.1.4 Direksiyon Devresi ... 10
 3.1.5 DC Motor Sürücü Kartı .. 10
 3.1.6 BLDC Motor Sürücü .. 11
 3.1.7 Batarya Yönetim Sistemi (BYS) ... 13
 3.1.8 Aracın Elektriksel Alt Sistemlerinin Tasarım Şeması 14
 3.2 Araç Üretimi .. 15
 3.2.1 Şasi Üretimi .. 15
 3.2.2 Kabuk Üretimi .. 15
 3.2.3 Batarya Kutusu Üretimi ... 17
 3.3 Mekanik Sistemler ... 18
 3.3.1 Şasi ... 18
 3.3.2 Direksiyon Sistemi .. 20
 3.3.3 Fren Sistemi ... 23
 3.3.4 Süspansiyon Sistemi ... 24
4. Sensörler .. 27
 4.1 RPLIDAR-A3 ... 27
 4.2 ZED 2 Stereo Kamera .. 29
5. Araç Kontrol Ünitesi ... 31
 5.1 NVIDIA Xavier Geliştirici Kiti ... 31
 5.2 Kablosuz Haberleşme .. 32
 5.2.1 LoRa Haberleşme Sistemi .. 32
 5.2.2 GSM Haberleşme Sistemi .. 36
 5.3 Kumanda ile Araç Kontrolü ... 38
6. Otonom Sürüş Algoritmaları .. 40
 6.1 Türkiye Trafik İşaretleri Levhaları Sınıflandırılması 40
 6.1.1 Bulunan Levhaların Uzaklıkları ... 42
 6.2 2D Lidar Kullanarak Bariyer Kontrolü ve PID ile Sürüş.......... 43
 6.3 Karar Verme Algoritmaları ... 46
 6.4 Şerit Takip Sistemi .. 48
7. Özgün Bileşenler ... 50
 7.1 Kendi Tasarımımız Tekerlik içinde Motor 50
 7.1.1 Motor Seçiminin Yapılması ... 50
 7.1.2 Tasarım Kistlamalarının Belirlenmesi 51
 7.1.3 Motor Performans Değerlerinin Belirlenmesi 51
 7.1.4 Malzeme Seçimi .. 53
 7.1.5 Analitik Hesaplamaların Yapılması .. 55
 7.1.6 Motorun Maxwell Üzerinde Modellenmesi 58
 7.1.7 Sonlu Elemanlar Analizi ile Optimizasyon Yapılması 59
 7.1.8 Isıl Hesaplamalarının Yapılması ... 62
 7.1.9 Sensör Bağlantılarının Belirlenmesi 63
 7.1.10 Motorun Üretimi ve Sonuç ... 65
 7.2 Batarya ... 66
 7.3 Direksiyon Devresi ... 71
 7.4 Direksiyon ve Fren Motor Sürücü Kartı .. 76
 7.4.1 Direksiyon Motor Sürücü Kartı Donanımı 76
 7.4.2 Direksiyon Motor Sürücü Kartı Yazılımı 80
 7.4.3 Fren Motoru Kartı Yazılımı ... 83
 7.5 GSM Devresi ... 84
 7.6 Telemetri Verici Kartı ... 87
 7.7 Telemetri Alıcı Kartı ... 90
 7.8 Park Algoritması ... 92
 8. Güvenlik Önlemleri ... 94
 8.1. Elektriksel Güvenlik Önlemleri ... 94
 8.1.1. BYS Önlemleri .. 94
 8.1.2 Elektrik Tesisatı ve İzolasyon ... 95
 8.1.3 Acil Durum Butonları .. 95
 8.2 Batarya Kütusu Özellikleri ... 95
 9. Simülasyon ve Test ... 95
 9.1 Simülasyon ortamı ... 95
 9.2 Araç ve Bileşenleri Üzerinde Yapılan Testler 96
 9.2.1 Kamera Testleri ... 96
 9.2.2 Logitech f710 Kontrolcüsü İle Yapılan Testler 97
 9.2.3 Lidar ile 2 Taraflı Duvar Ortalama Testi 97
 10. Referanslar .. 98
1. Takım Organizasyonu
1.1 İTÜ Güneş Arabası Ekibi

Ekibimiz İstanbul Teknik Üniversitesi çatısı altında farklı disiplinlerden Şekil 1.1’te görülen otuz beş lisans öğrencisi ve danışman olarak bir Dr. Öğr. Üyesi akademisyenden oluşmaktadır.

Şekil 1.1 İTÜ Güneş Arabası Ekibi

Bunlara ek olarak üstteki şemada da görüldüğü üzere, ekibimiz bir yönetim kuruluna sahip olmasının yanı sıra ekibimize aktif olarak pek çok disiplinde destek olan danışma kurulumuz
yer almaktadır. Otonom aracımız ile ilgilenen alt gruplarına dair detaylı görevlendirmeler ise şu şekildedir:

- **Otonom Sistemler Grubu** 4’ü Bilgisayar Mühendisliği, 1’i Matematik Mühendisliği olmak üzere toplamda 5 öğrenciden oluşmakta olup görevleri şunlardır:
 1. Şerit takibi algoritmaları
 2. Sürüş algoritmaları
 3. Gömülü sistemler yazılımları
 4. Yapay zekâ algoritmaları
 5. Araca sensör entegresi
 6. Simülasyon ortamında Teknofest parkurunun oluşturulması ve algoritmaların test edilmesi
 7. Park algoritması yazılması

- **Gömülü Sistemler Grubu** 3’ü Kontrol ve Otomasyon Mühendisliği, 2’si Elektronik ve Haberleşme Mühendisliği olmak üzere toplamda 5 öğrenciden oluşmakta olup görevleri şunlardır:
 1. DC Motor sürücü tasarımını
 2. Direksiyon devresi tasarımını
 3. BMS (Battery Management System) tasarımını
 4. CAN-BUS hattı kurulumu
 5. Otomatik mekanik fren kartı tasarımını
 6. Kablosuz haberleşme sistemlerinin kurulması

- **Mekanik Sistemler Grubumuz** 1’i İmalat Mühendisliği, 4’ü Makina Mühendisliği olmak üzere toplamda 5 öğrenciden oluşmakta olup görevleri şunlardır:
 1. Aracın dış kabuk tasarımını
 2. Şasi tasarımını
 3. Sıçrampiyon sistemleri tasarımını
 4. Otonom direksiyon sistemi tasarımını
 5. Otonom fren sistemleri tasarımını
 6. Tahrik sistemleri tasarımını

- **Güç Sistemleri Grubu** 5’i Elektrik Mühendisliği, 1’i Kontrol ve Otomasyon Mühendisliği olmak üzere toplamda 6 öğrenciden oluşmakta olup görevleri şunlardır:
 1. Motor sürücü tasarımını
 2. Motor tasarımını
 3. Batarya tasarımını

- **Üretim Grubu** ise Metalurji ve Malzeme Mühendisliği bölümünden 5 öğrenciden oluşmakta olup görevleri şunlardır:
 1. Kabuk üretimi analizi
 2. Modelin işlenmesi
3. İşlenen model üzerinden kalıp çıkarılması
4. Üretimin yapılması

1.2 Proje Zaman Planı

Yaptığımız zaman planlarıyla gidişatımızı karşılaştırmak için belirli periyotlarda grup sorumluları ile toplantılar yaparak grupların ilerleyişi takip etmektedir. Bu toplantılar işleri sorumlu kişi, zaman, risk, iş önceliği, iç ve dış bağımlılıklarımız gibi parametreleri de gözeterek tüm ekin erişimi olan bir bulut sistemine aktarmaktayız.

Covid-19 pandemisi sebebiyle otomobil alanımızda çalışmalarımıza 2020 yılı Eylül ayında başladı bu ve geçmiş dönem boyunca hedeflerimiz-yaptıklarımız Şekil 1.2’de Gantt Chart olarak belirtilmiştir.

Bu noktada güncel olarak aracımızın şassi üretimi tamamlanmış olup, simülasyonda çalıştığımız sistemlerin aracına entegrasyonu gerçekleştirildiştir. Şu anda Teknofest için araç üzerinde test ve geliştirme çalışmaları yapılmaktadır.

2. Ön Tasarım Raporu Değerlendirmesi

Ön tasarım raporunda Lidar ile sürücü kısımda PID algoritması bulunmamaktadır. PID uygulanmadığı zaman aracın yolda ilerlerken salınım yaptığı görülmüştür. İyileştirilmiş bir sürücü elde etmek için, Lidar sensörü ile sürücü için özgünleştirilmiş PID uygulaması uygulanmıştır ve aracın virajlarda ve düz yolda ilerlerken iyileştirilmiş bir sürücü elde etmesi
sağlanmıştır.

Kritik tasarım raporu sonrası aracın tamamlanması için oluşturduğumuz bütçe Tablo 2.1’de şu şekilde belirtilmiştir:

<table>
<thead>
<tr>
<th>İsim</th>
<th>Tutar</th>
<th>Öncelik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araç Bilgisayarı</td>
<td>~10.000₺</td>
<td>Kritik</td>
</tr>
<tr>
<td>Araç Üretim Kalıp</td>
<td>30.000₺</td>
<td>Yüksek</td>
</tr>
<tr>
<td>Velodyne 3D Lidar</td>
<td>4500₺</td>
<td>Orta</td>
</tr>
</tbody>
</table>

Tablo 2.1 ÖTR İhtiyaçlar Tablosu

İTÜ Güneş Arabası Ekibi olarak önündeki Teknofest Robotaksi-Binek Otonom Araç Yarışmasında bu sene için 3D Lidar temin edip kullanılaması maddi imkansızlıklarından dolayı gerçekleştirilememiştir. 3D Lidar için ayrılan bütçenin düşük bir kısmıyla aracın üretilmesi ve çalıştırılması için gerekli Curtis Motor Sürücü, Batarya şarj edicisi, Röleler ve Takım tezgâhları gibi unsurlara devredilmiştir. Bu malzemelerin fiyatları ve önceliklerine Tablo 2.2’de görülmektedir.

<table>
<thead>
<tr>
<th>İsim</th>
<th>Tutar</th>
<th>Öncelik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araç Bilgisayarı</td>
<td>~10.000₺</td>
<td>Kritik</td>
</tr>
<tr>
<td>Araç Üretim Kalıp</td>
<td>30.000₺</td>
<td>Yüksek</td>
</tr>
<tr>
<td>Batarya Charger</td>
<td>~7.000₺</td>
<td>Yüksek</td>
</tr>
<tr>
<td>Curtis Motor Sürücü</td>
<td>2.500₺</td>
<td>Kritik</td>
</tr>
<tr>
<td>Fujitsu Role</td>
<td>~435₺</td>
<td>Yüksek</td>
</tr>
<tr>
<td>Takım Tezgâhı</td>
<td>~7.000₺</td>
<td>Orta</td>
</tr>
</tbody>
</table>

Tablo 2.2 Güncel İhtiyaçlar Tablosu
3. Araç Özellikleri
Araç özellikleri tablosu (Tablo 3) aşağıda belirtilmiştir. Regülasyon sınırları içerisinde kalacak ön tasarım üzerinden belirlemeler gerçekleştirilmiştir.

<table>
<thead>
<tr>
<th>Özellik</th>
<th>Birim</th>
<th>Değer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uzunluk</td>
<td>mm</td>
<td>2730</td>
</tr>
<tr>
<td>Genişlik</td>
<td>mm</td>
<td>1750</td>
</tr>
<tr>
<td>Yükseklik</td>
<td>mm</td>
<td>1400</td>
</tr>
<tr>
<td>Teker Sayısı</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Şasi</td>
<td>Materyal</td>
<td>Çelik</td>
</tr>
<tr>
<td>Kabuk</td>
<td>Materyal</td>
<td>Karbon Fiber Kompozit</td>
</tr>
<tr>
<td>Ön Teker Çapı</td>
<td>mm</td>
<td>560</td>
</tr>
<tr>
<td>Ön Teker Genişliği</td>
<td>mm</td>
<td>95</td>
</tr>
<tr>
<td>Arka Teker Çapı</td>
<td>mm</td>
<td>560</td>
</tr>
<tr>
<td>Arka Teker Genişliği</td>
<td>mm</td>
<td>95</td>
</tr>
<tr>
<td>Aracın Yerden Yüksekliği</td>
<td>mm</td>
<td>110</td>
</tr>
<tr>
<td>Motor Gücü</td>
<td>kW</td>
<td>1,8</td>
</tr>
<tr>
<td>Motor Verimliliği</td>
<td>%</td>
<td>85</td>
</tr>
<tr>
<td>Ön İz Genişliği</td>
<td>mm</td>
<td>1268</td>
</tr>
<tr>
<td>Arka İz Genişliği</td>
<td>mm</td>
<td>1005</td>
</tr>
<tr>
<td>Aks Aralığı</td>
<td>mm</td>
<td>1365</td>
</tr>
<tr>
<td>Araç Ağırlığı</td>
<td>kg</td>
<td>110</td>
</tr>
</tbody>
</table>

| Tablo 3 Araç Özellikleri |

3.1 Elektrik Sistemleri

3.1.1 Kendi Tasarladığımız Tekerlek İçi Motor

3.1.2 Batarya

3.1.3 Araç İçi Haberleşme

![CAN Bus Haberleşme Şeması](image)

Şekil 3.1.3 CAN Bus Haberleşme İcin Örnek Bağlanti Şeması

3.1.4 Direksiyon Devresi
Aracın otonom kontrol dışında kullanılması için kullanılabilecek direksiyon sistemi bulunmaktadır. Bu sistemdeki direksiyon simidi içerisinde kendi tasarımımız olan direksiyon devresi bulunmaktadır. Direksiyon devremiz kendi tasarımımız olduğu için Bölüm 7.3’te detaylandırılmıştır.

3.1.5 DC Motor Sürücü Kartı
Araçta kullanılabilecek Direksiyon DC ekibimizin özgün tasarımı olup, özgün değerler Bölüm 7.4’te detaylı anlatılmıştır. Kullanılan DC motorun veri kitapçığına ise Şekil 3.1.5’ten ulaşılabilir.
3.1.6 BLDC Motor Sürücü

Araçın tahrık motorunun kontrol edilmesi için Tritium WaveSculptor 22 motor sürücü kartı kullanılmaktadır. Bu motor sürücünün limit değerleri aşağıdaki gibidir.

<table>
<thead>
<tr>
<th>Şekil 3.1.5 Motor Özellikleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sürekli Bara Gerilimi (Minimum):</td>
</tr>
<tr>
<td>Sürekli Bara Gerilimi (Maksimum):</td>
</tr>
<tr>
<td>Anlık Bara Gerilimi (Maksimum):</td>
</tr>
<tr>
<td>Anlık Bara Akımı (Maksimum):</td>
</tr>
<tr>
<td>Anlık Bara Akımı (Maksimum) (Rejeneratif Fren):</td>
</tr>
<tr>
<td>Anlık Çıkış Gücü (Maksimum):</td>
</tr>
<tr>
<td>30°C Sıcaklıkta Sürekli Çıkış Gücü (Maksimum):</td>
</tr>
</tbody>
</table>
Şekil 3.1.6.1 Tritium WaveSculptor 22 motor sürücü verim kontur grafiği.

Bu motor sürücü, normal sürüş ve rejeneratif fren işlevlerini desteklemektedir. Bununla birlikte gerekli ölçümleri yaparak CAN Bus haberleşmesi ile paylaşmaktadır. Ayrıca genel ayarlamalarının yapılabilmesi için kullanılan bir bilgisayar ara yüzüne sahiptir.

Motor Sürücünün ölçümünü yaparak CAN Bus üzerinden paylaştığı bazı veriler aşağıdaki gibidir:

- Motor Akımı
- Motor Hızı
- Araç Hızı
- Bara Akımı
- Bara Gerilimi
- Faz Akımları
- Motor Sıcaklığı
- Motor Sürücü Sıcaklığı
- Mesafe Verisi

Rejeneratif fren komutu ve fren oranı yine CAN Bus üzerinden motor sürücüye gönderilmektedir. Bu şekilde aracın kontrolü sağlanmaktadır.

Şekil 3.1.6.2: Tritium WaveSculptor 22 Motor Sürücü

3.1.7 Batarya Yönetim Sistemi (BYS)

BYS tarafından dış dünyaya gönderilen bazı veriler şu şekildedir:

- En Yüksek Gerilim
- En Düşük Gerilim
- En Yüksek Sıcaklık
- En Düşük Sıcaklık
- Tüm Seri Grupların Gerilimleri
- Dengeleme Durumu
- Batarya Akımı
- Hata mesajları
3.1.8 Aracın Elektriksel Alt Sistemlerinin TasarımŞeması

Aracımızın Elektriksel Alt Sistemlerin Şeması aşağıda belirtildiği gibidir:
3.2 Araç Üretimi

3.2.1 Şasi Üretimi

- Paslanmaz çelik profillerin belirlenen ölçülerde avuç taşlama tezgahında kesilmesi
- Kesilen profillerin krom elektrot kullanarak ark kaynağı yöntemiyle birleştirilmesi
- Kaynak işlemi bitmekten sonra avuç içi taşlamayla zımpara ve yüzey işlemi yapılması

![Şekil 3.2.1 Şasi CAD Tasarımı](image)

3.2.2 Kabuk Üretimi

Arabanın kabuk üretimi, özgün mukavemetin yüksek olması istendiğinden dolayı kompozit malzemeden üretilmiştir. Kompozit malzemeler, matris oluşturan polimer reçineler ve takviye elemanını oluşturan fiberlerin birbiri ile bağı yapmasıyla üretilir. Bu yapının mukavemetini sağlayan esas unsurlardan biri arayüzeydeki bağı mukavemetidir. Fiber ve reçinenin kimyasal
yapıları birbirine uyumlu olduğu derecede bağ mukavemetinde artış gözlenir. Bağ mukavemetinin yüksek olması istendiğinden kabuk üretimi karbon fiber ve epoksi reçine ile gerçekleştirilmiştir.

• Kalıbın çözücü kimsayalarla temizlenmesi
• Kalıba sıvı kalıp ayırıcı sürülmesi
• Epoksi reçine
• 0/90 yönelimli Karbon Fiber
• Epoksi reçine
• -45/+45 yönelimli Karbon Fiber
• Epoksi reçine
• Rohacell Yapısal Köpük
• Epoksi Reçine
• -45/+45 yönelimli Karbon Fiber
• Epoksi reçine
• -45/+45 yönelimli Karbon Fiber
• Epoksi reçine
• 0/90 yönelimli Karbon Fiber
• Soyuma kumaşı serimi
• Vakum keçesi serimi
• Kalıbın vakum torbasına alınması
• Vakum torbalama yönteminin tamamlanıp ürünün vakuma alınması
• Reçinenin kürlenmesi
• Ürünün kalıptan ayrılanması
• Trim ve yüzey işlemleri
Ürettığimiz şasinin üzerine gelecek kabuk için yapılan kabuk tasarımları ise şu şekildedir:

![Şekil 3.2.1 Araç İçin Hazırladığımız Çizim Taslaklarımız](image1)

![Şekil 3.2.2 Araç Kabuğu İçin Hazırlanan CAD Görüntüleri](image2)

3.2.3 Batarya Kutusu Üretimi

Malzeme Seçimi:

Yukarıda bahsedilen özellikleri karşılayacak bir batarya kutusunun üretimi için ana malzeme sınıfları arasından birini seçmemiz gerekir. Bunların arasında minimum ağırlık ve maksimum mukavemet hedefine ulaşacak malzeme sınıfı kompozit malzemelerdir. Kompozit malzemeler üzerinden de sandviç yapılı kompozit malzeme üretiminin gerçekleştirerek ürünümüzü daha mukavim olacak şekilde elde edebiliriz. Sandviç yapılı kompozit malzemeyi üretmek için gereklid olan malzemeler aşağıdaki listelenmiştir:

- Takviye elemanı → Kevlar Fiber
- Matris → Epoksi
- Çekirdek Malzeme → Honeycomb

Üretim:

- Kalıbın çözücü kimiyasal yardımcıla temizlenmesi
- Kalıba sıvı kalıp ayırıcı sürülmesi
- 3 kat kevlar prepreg serilmesi
- Honeycomb yerleştirilmesi
- 3 kat kevlar prepreg serilmesi
- Gillfab 1367B serilmesi
- Release Film serilmesi
- Vakum keçesinin serilmesi
- Kalıbın torbaya alınması
- Torbaya alınan kalıbın firna verilmesi
- Reçinenin kürlenmesi
- Ürûnün kalıptan alınması
- Trim ve yapıştırma işlemleri

Batarya kutusunun özelliklerine ise Güvenlik Önlemleri Altında Bölüm 8.2 Batarya Kutusu kısmından ulaşılabılır.

3.3 Mekanik Sistemler

3.3.1 Şasi

Aracımızın şasısı çelik kare profiller kullamlarak üretilmiştir. Bunu tercih etmemizdeki en büyük sebeb üretiminin ve tasarımının kolaylığı aynı zamanda mekanik alt sistemlerinin entegrasyonun kolay bir şekilde yapılmasını olanak sağlamasıdır. Aşağıda araç şasisinin farklı açılardan görüntüsü verilmiştir.

Aracımızın şasi tasarımını yaparken pilot ergonomisine önem verilmiştir. Aynı zamanda pilotla beraber alt sistemlerin sağabileceği minimum tasarım tercih edilmiştir.
3.3.2 Direksiyon Sistemi

3.3.2.1 Direksiyon Kutusu Dişlileri

Dişli tasarımları yapılırken ackerman geometrisine göre teker açıları hesaplanmış ve pinyon kremayer dişli oranları belirlenmiştir. Dişlilerdeki kavrama oranını artırmak amacıyla helisel pinyon ve kremayer tercih edilmiştir. Dişli malzemesi olarak 4340 temperlenmiş çelik tercih edilmiştir.
3.3.2.2. Direksiyon Kutusu

Şekil 3.3.2.2 Direksiyon Kutusu CAD Görüntüleri

3.3.2.3 Motor Aktarma Dişlileri

Aracımız otonom olarak yolcu içerisindeyken tekerlekleri sıkmış bir şekilde hareket ettirmesi gerekmektedir. Bundan dolayı hem direksiyon motorunun momentini artırmak hem de potansiyometre üzerinden okunan değerleri daha hassas okumak için 1’e 6 oranında aktarma yapan bir sistem tasarlanmıştır.
Şekil 3.3.2.3 Motor Aktarma Dişlileri Montajlı Hali

3.3.2.4. Potansiyometre

Aracımızdaki direksiyon hareketini kontrol edebilmesi için açısal potansiyometre kullanılmıştır. Bunun içinde motor milinden çıkan aktarma dişlisinden kaplin yardımcı ile potansiyometreya bağlantı sağlanmıştır. Böylece her zaman direksiyonun hangi açıda olduğu algoritmalarımıza aktarılmaktadır.

Şekil 3.3.2.4 Direksiyon Sisteminin Potansiyometre Montajlı Hali

3.3.2.5 Ackermann Geometrisi

Sola doença 4 tekerlekli bir araç düşünülürse aracın sola doğru çok yavaş bir hızla döndüğü varsayılsa araca kayma olmadığı düşünülebilir ve dönüş esnasında iç ve dış tekerlek
arasındaki kinematik açıklanabilir. Araç ızı ve dingil mesafesi kinematik incelemede aracın karakteristiğini gösteren ana parametrelerdir. Bu geometri aynı zamanda Ackerman Geometrisi olarak da bilinmektedir.

Aracımız parkurdaki virajları alabildiği ve yazımlar da kullanılan matematikle uyuşması için ackerman geometrisine uygun tasarlanmıştır. Bunun için de Steering rod kollarına ek bir parça tasalanarak ackerman error minimize edilmiştir.

Şekil 3.3.2.5 Direksiyon Kolu Montajlı Hali

3.3.3 Fren Sistemi

3.3.4 Süspansiyon Sistemi

Süspansiyon sistemimizde iki farklı tıpte süspansiyon kullanılmıştır. Ön tarafta kinematik ayarlamaların kolay bir şekilde yapılabilmesi ve çekiç geometrimize iyi bir şekilde entegre olabilmesi için Çift A kollu sistem tercih edilmiştir.

Arka tarafta tasarım kolaylığı ve motor montajının kolaylığı nedeniyle Semi-Trailing Arm sistemi tercih edilmiştir.
Sistem tasarımı Adams Car programı üzerinden kinematik noktaların belirlenmiş ve kinematik analizleri yapılmıştır. Sistemin tasarımın sonraki aşamada SolidWorks üzerinden gerçekleştirilmiştir.
Şekil 3.3.4.4 Ön Süsansiyon

Şekil 3.3.4.5 Arka Süsansiyon
4. Sensörler

4.1 RPLIDAR-A3

Şekil 3.3.4.6 Arka Sıspansiyon

Şekil 4.1 RPlidar A3 Tasarımı

Tarama frekansı 10 Hz (600 d/dk) olmakla birlikte isteğe göre frekansı 5-20 Hz olarak ayarlanabilmektedir. 10 Hz tarama frekansında, örnekleme hızı 16 kHz ve açısal çözünürlük 0.225°'dir.

Normal çalışma düzeninde saat yönüne dönerek taramaktadır. Kullanıcılar PWM yoluyla lidarın dönme hızını, dönmeye başlamasını ve dönüyeyi durdurmasını kontrol edebilmektedir. Her mesafe bulma işleminde, lidar kızılötesi lazer sinyali gönderir ve çarptığı nesneden geri seken ışınlar sayesinde nesne algılama sağlanır.

Lidarın kullandığı lazer yapışık ışık kaynağı ve güneş ışığından etkilenmemektedir, bu sayede kapalı ve açık alanlarda verimli olarak kullanılabilmektedir.

Lidar, mesafe ölçücü çekirdek ve motor sistemi için ayrı 5V’lık direkt akım gücü kullanmaktadır. Lidar, XH2.54-5P (Şekil 4.1.4) erkek soketi kullanmaktadır.
Aracımızda lidar ile bariyer tespiti yaparak gördüğü trafiq tabelalarına göre farklı fonksiyonları çalıştırıp bariyerlere çarpmadan parkuru bitirmeyi amaçlamaktayız.

4.2 ZED 2 Stereo Kamera

Aracımızda kullanacağımız bir diğer sensör ise yeni edindğimiz StereoLabs firmasının ürettiği ZED 2 Stereo Kamera (Şekil 4.2.1) olacaktır. Bu kamerayı asıl kullanma amacımsız, trafiq işaretleri levhalarının tespiti yapıldıktan sonra levhaların uzaklıkları ölçülüp aracın buna

Şekil 4.1.4 RPlidar A3 Soket Görüntüsü

Şekil 4.1.5 Gerçek Hayattaki Çıktısının RVIZ Üzerinde Görselleştirilmesi

![ZED Stereo Kamera Nokta Bulutu ve Geniş Açılı Kamera Çıktısı](image)

Şekil 4.2.1 ZED Stereo Kamera Nokta Bulutu ve Geniş Açılı Kamera Çıktısı [9]

ZED 2 stereo kamera 2K video kalitesinde saniye başına 15 kare vermekte ve video kalitesi düştükçe saniye başına kare sayısı artmaktadır. 400Hz hızında hareket sensörleri veri vermektedir ve konum güncellemeyi de 100Hz hızla yapmaktadır. 3D olarak 20 metreye kadar ve 2D olarak da 40 metreye kadar nesne tespiti yapmaktadır.

Arapımızda ZED 2 stereo kamerayı YOLO modeli için görüntü yakalamakta, trafik tabelalarının mesafesini ölçmekte ve şerit takibi yapmakta kullanmayı planlamaktayız. ZED 2 stereo kamerayı kullanarak YOLO-V3 modelini araç bilgisayarda GPU üzerinde çalıştırılmaktadır.

5. Araç Kontrol Ünitesi

Araçta kullanmayı planladığımız bilgisayar NVIDIA Xavier’dır. Nvidia Xavier elde edilememesi durumunda ise nispeten güçlü NVIDIA ekran kartına sahip bir laptop bilgisayar kullanılacaktır. Araçta kullanılacak levha tanıma algoritması olan YOLOv3 NVIDIA CUDA çekirdekleri sayesinde bu GPU üzerinde çalıştırılacaktır.

5.1 NVIDIA Xavier Geliştirici Kiti

Nvidia firmasının bizlere sunmuş olduğu modüllü Jetson AGX Xavier sayesinde 20 TOPS’e kadar yapay zekâ performansına sahiptir. Ayrıca 32 TOPS’e kadar yapay zekâ performansına
sahip yapay zekâ modüllerine sahiptir. 32GB belleğe ve yine 32GB depolama alanına sahip olması programlarımızı çalıştırmak için oldukça büyük bir avantajdır \[^4\]. Ayrıca Modülünde bulunan 40 Pin başlık sayesinde CAN çıkışına sahiptir. Böylece Xavier’e sahip olmamız durumunda, şu an kullandığımız ve testlerimizde kullanacağız CAN ile Laptop arasında bağlantı kuran Arduino’yu kullanmamız gerek kalmayacaktır.

![ZED NVIDIA AGX Xavier](image)

Şekil 5.1 ZED NVIDIA AGX Xavier

<table>
<thead>
<tr>
<th>GPU</th>
<th>Tensor Çekirdeği ile donatılmış 512 Çekirdek Volta GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>8 Çekirdekli ARM v8.2 64 Bit CPU, 8 MB L2 + 4 MB L3</td>
</tr>
<tr>
<td>Bellek</td>
<td>32GB 256-Bit LPDDR4x</td>
</tr>
<tr>
<td>Depolama</td>
<td>32 GB eMMC 5.1</td>
</tr>
</tbody>
</table>

5.2 Kablosuz Haberleşme

Araçta 2 tip haberleşme sistemi bulunacaktır. Haberleşmeyi gerçekleştirecek devre kartları ekibimizin tasarımıları olup, bölüm 7.4’te detaylı olarak anlatılmıştır. Araçtaaki verileri takip etmek için hücresel ağı kullanarak internete veri yayılan GSM sistemi, yarışın başında ve acil müdahale sırasında kullanılabilecek olan LoRa haberleşme sistemidir.

5.2.1 LoRa Haberleşme Sistemi:

LoRa (Long Range):

![LoRa Sinyalleri](image1.jpg)

Şekil 5.2.1 Dalga Halindeki LoRa Sinyalleri

Şekil-1’de gösterildiği gibi veri taşıyıcı sinyalin frekansının artıp azalmasına göre taşınımaktadır. İlk 11 frekansı artan sinyalin ardından gelen 2 tane azalan sinyal veri akımının başladığini temsil etmektedir bu aralığa aktarılacak istenen veri alıcı tarafına aktarıldı.

Microchip RN2483 Kablosuz Haberleşme Modülü:

![Microchip RN2483](image2.jpg)

Şekil 5.2.2 Microchip RN2483

bağlanabilir ve verilerin daha geniş bir alana yayılmasını sağlar.

RN2483 Modülünün programlanması ve haberleşme:

Mac Komutları sayesinde LoRaWAN ağına veri taşınması ve alınması sağlanır fakat LoRaWAN ağına erişilebilirliğinin ve gereğinin olmamasından dolayı araçta kullanılmayacaktır.
Radio Komutları ile veri alma, veri gönderme, cihazı alıcı olarak hazır bekletme gibi bir çok komut bulunmaktadır.
Sistem Komutları modülü uyandırma, uyutma gibi modülün donanımsal özelliklerini kontrol edecek komutları içerir.

Haberleşme Öncesi Konfigürasyonlar:

1- İlk önce modem mikrokontroller tarafından reset komutu gönderilerek resetlenir.
2- Modül resetlendikten sonra M2M haberleşmesi yapılabilmesi için LoRaWAN ağının kapatılması gerekmektedir.
3- Modülün LoRa modülasyon tipi ile haberleşeceğini dair bir komut gönderilmesi gerekmektedir
5. Veri iletiminin hangi frekanssta gerçekleştireceği iletilir. Araçta sistemde 868 MHz frekans bandında haberleşme sağlanmaktadır.

Verici Tarafi:

Verici tarafı aktarılacak istenen veri ya da veri grubunun paketlenip modüle UART arayüzü tarafından aktarıldığı yerdir. Veri aktarımı güvenli ve sorunsuz bir şekilde gerçekleşmesi için verilerin paketlenme şekli de önemli rol oynamaktadır. İlk olarak veri iletiminin başlangıcını

<table>
<thead>
<tr>
<th>Başlangıç Baytı</th>
<th>Veri</th>
<th>Veri Ayracı</th>
<th>Veri</th>
<th>Veri Ayracı</th>
<th>.....</th>
<th>Paket Boyutu</th>
<th>Bitirme Baytı</th>
</tr>
</thead>
</table>

Şekil 5.2.4 LoRa Haberleşmesi Paket Yapısı

Alıcı Tarafi:

Komut Gönderen Sistemin Oluşturulması:

Visual Studio üzerinden C# programlama dili ve NET.Framework platformunda oluşturulan arayüz sayesinde komutlar verici devreye gönderilmiştir.

Şekil 5.2.5 Örnek Arayüz

Vericiye aktarmak için bilgisayara bağlandktan sonra bağlı olduğu port belirtilmeli ve bağlantı kurulmalıdır. Sonrasında verici devreye USB arayüzü üzerinden komut aktarımı yapılabilirmektedir.

USB arayüzüne aktarılan veriler FTR32 entegresi sayesinde Mikrokontrolcüye aktarılmaktadır. Mikrokontrolcü de uygun bir şekilde veriyi paketleyip haberleşme modülüne göndermektedir. İstenen komut, böylelikle verici tarafından araca aktarılmış olur.
Alıcı Tarafının Oluşturulması

Araçta bulunan telemetri devresindeki mikrokontrolcü UART arayüzünden alıcı konumundaki RN2483 kablosuz haberleşme modülüne periyodik olarak alıcı olarak hazırlık için komut gönderilir. Verici tarafından gönderilen komut alıcı modülünün UART arayüzü üzerinden mikrokontrolcüye gönderilir. Mikrokontrolcü paketin doğruluğunu kontrol eder ve gelen komutlara göre CANBUShattına bir mesaj paketi çıkarır.

5.2.2 GSM Haberleşme Sistemi:

GSM haberleşmesi hücresel bir haberleşme tipi olup kendinden daha gelişmiş hücresel haberleşme teknolojilerinden daha düşük bant genişliği ve imkan sunmasına rağmen menzilinin yüksek olması ve erişilebilirliğinin daha kolay olması bu teknolojinin seçilmesinde ana rol oynamıştır. GSM haberleşmesi içerisinde yer alan GPRS teknolojisi ile internet ortamına veri aktarımı sağlanmaktadır. Araçtaki verilerin aktarılması GPRS ile TCP/IP tabanlı MQTT protokolü sayesinde sağlanmıştır. SimCom firmasının bir ürünü olan Sim800l GSM modülü fiyatının ucuzluğunu ve ulaşılabilirliğini ile oluşan büyük kullanıcı topluluğuna sahip olmasından tercih edilmiştir.

MQTT
TCP-IP tabanlı bir iletişim protokolü olan MQTT [7] özellikle nesnelerin interneti teknolojisinde en çok tercih edilen protokoldür. Bunun nedenleri:
-Düşük güç tüketimine sahip olması,
-Kullanılırken getirdiği basitliği,
-TCP-IP protokollünün getirdiği veri güvenliği olmuştur.

MQTT ağında yayıncı(publisher), abone(Subscriber) ve MQTT broker olmak üzere 3 temel birim vardır. Mesajlar ise konular altında ayrılır. Yayıncı bir konu altında mesajını sunucuya Yayınlar, aboneler eğer topik onlar ile alakalı ise önceden o topiğe abone olur ve abone olduğu topik altında sunucuya mesaj geldiğinde mesaj o aboneye de iletmiş olur.
Araç Verilerinin Bulut Sisteme İletilmesi:
GSM devresinde bulunan MCP2515 entegresi sayesinde CAN Bus hattında yayınlanmakta olan araç verilerine erişim sağlanmaktadır. GSM devresi mikrokontrolcü olarak kullanılan ATMEGA2560'de CAN Bus girişleri olmamasından kaynaklı CAN sinyalini SPI sinyaline çeviren MCP2515 entegresi kullanılmıştır. MCP2515 entegresinden gelen CAN hattındaki verinin kimliği (ID) ve veri paketi tek bir SPI paketi ile kontrolcüye iletilmektedir. Arduino platformunda oluşturulan devrenin yazılımında SPI paketleri kesmeler (interrupt) sayesinde uygun değişkenlere aktarılmaktadır. GPRS ile internete aktarılması istenen veriler her biri içerisinde bir konu (topic) ve mesa çerçevesinde birleştirilerek altı tane konu ve verisini içeren JSON dosyalarında önce UART arayüzü ile SIM800L modülüne ardından Thingsboard platformuna aktarılmaktadır. Thingsboard MQTT broker hizmeti sunmasını yanı sıra verilerin kaydedilmesi ve görsel bir arayüzde son kullanıcıya sunması açısından tercih edilmiştir. Thingsboard üzerinden takip edilebilen araç verileri:
- Motor Akımı
- Batarya Gerilimi
- Minimum Voltaj
- Maksimum Voltaj
- Batarya Sıcaklığı
- Motor Sıcaklığı
- Hız
- Direksiyon açısı
- Konum
- SOC (Şarj seviyesi)
- Hata Kodları
Verileri sunacaktır.

Şekil 5.2.7 Arayüz Tasarımı

5.3 Kumanda ile Araç Kontrolü

Otonom araçların insansız sürüs dışında da kumanda edilebilmesi güvenlik, ulaştırma, hata ayıklama ve test gibi birçok durumdan ötürü elzem önemine sahiptir. Dolayısıyla aracımıza Logitech F710 Kablosuz Kumanda kontrolü eklenmiştir. Ubuntu işletim sisteminin bilgisayar üzerindeki bütün yazılım ve donanıma erişim esnekliği sayesinde kablosuz kumandaya yollanan paketleri bir callback fonksiyonu tarafından yakalamaktan istediğimiz verileri elde etmektediriz.

Şekil 5.3.1 Kumandali kontrol ünitemiz tarafından kullanılan Logitech F710 konsolu

Şekil 5.3.2 Kablosuz kontrolcümüzün girdi cihazları arasındaki fiziksel karşılığı ve özellikleri

Şekil 5.3.3 Kablosuz kontrolcümüzden gelen verinin “Joy” ROS paketi olarak yayımlanması

Ana sürüş kodundaki ROS callback’i ile araç durumunda değişiklikler yapılmasına dair örnek kod parçası ise aşağıda Şekil 5.3.4’te gösterilmiştir:
6. Otonom Sürüş Algoritmaları

Araçta yazdığımız programların girdi çıktıları ve kamera, lidar gibi sensörlerden gelen verilerin iletişiminin sağlanması için araç üzerinde Robot Operating System (ROS) kullanılacaktır. Otonom programları ve araç kontrol programları ROS düğümleri üzerinden veri aktarımı gerçekleştirilecektir. ROS’un çalışma yapısı ise Şekil 6.1’de belirtilmiştir.

Kullanılan ROS sürümü ise ROS Noetic’tir. Bunun için araç bilgisayarında Ubuntu 20.04 işletim sistemi kullanılacaktır.

6.1 Türkiye Trafik İşaretleri Levhaları Sınıflandırılması

YOLO sisteminin ağ yapısına Şekil 6.1.1’den ulaşılabılır.

YoLOv3 eğitimi için 15 bin veriyi aşkın Türkiye Trafik İşaretleri verisi ile Darknet Yapı'nın (Darknet Framework) kullanarak Google Colab üzerinde eğitimim gerçekleştirilmiştir. Eğitim, Grafik İşlem Birimi üzerinde (GPU), NVIDIA’nın bizlere sunduğu CUDA ve önemli bir görüntü işleme kütüphanesi olan OpenCV kütüphanesi kullanılarak gerçekleştirilmiştir.

Kullanılan veri setine göre eğitimde kullanılabacak YoLO konfigürasyon dosyası hazırlanmıştır. Eğitimde yaklaşık 14 bin iterasyon sonucunda istenen hata değerlerine ulaşılmıştır. (Şekil 6.1.2)

Modelin çıktısı Gazebo ortamında test edilmiş olup başarılı sonuçlar elde edilmiştir (Şekil 6.2.1) ama buna karşın gerçek hayatta gerçek tabelalarla yapılan testlerde “Sola Dönülmez” ve “Sağa Dönülmez” tabelasının karşıtırıldığı görülmüştür.
Bu hatayı aşmak için YOLOv3 tarafından bu nesneler tespit edildiğinde elde edilen levha görseli üzerinde yönlendirilmiş gradyanların histogramı (histogram of oriented gradients) tekniği uygulanmış olup (Şekil 6.1.4) bu görsellerine önce önceden eğitilmiş “Sola Dönülmez” ve “Sağa Dönülmez” ayırımı yapan destek vektör makinesine (SVM) girdi olarak verilmişdir. SVM’in ikili (binary) çıktısı ise levhanın “Sola Dönülmez” veya “Sağa Dönülmez” olduğunu belirtmektedir. Kendi topladığımız 150 görüntü ile eğitilen SVM, 30 verili teste tabi tutulmuş olup bu testte f puanı 1.00 (alınabileceği en yüksek doğruluk) olarak olmuştur.

YOLOv3 ile birleştirilen SVM gerçek hayattaki levhalar da denenmiş ve oldukça başarılı bir sonuç elde etmiştir.

6.1.1 Bulunan Levhaların Uzaklıklarının Ölçülmesi

Yarışmada aracın, tabelalara göre uzaklık verisini ölçmesi ve bu verilere göre aksiyon alması gerekmektedir. Özellikle yarışmadaki yolcu indirme-bindirme görevini gerçekleştirmek için duraklarda aracın doğru konumda durabilmesi için uzaklık verisi önemli bir mesele teşkil etmektedir. Bu veriyi almak içinimde bulunan ZED 2 Stereo Kamera Python API’si
kullanılmıştır.

API’nin sunduğu retrieve_measure metoduyla derinlik (nokta bulutu) elde edilirken retrieve_image metoduyla ise sol kameradan gelen görüntü alınmaktadır. Bu taraftan alınan görüntü YOLOv3 ağına ve SVM’e girdi olarak verilmektedir. Bu modelde belirlenen görseldeki levhaların koordinatlarının (bounding boxes) nokta bulutunda düşen x,y ve z uzaklıkları belirlenip bu noktalara göre 3 boyutlu uzayda noktaya olan uzaklık formülü ile uzaklık belirlenmiş olur. Gerçek hayatta levha elde edilen levha ve uzaklığı tespiti Şekil 6.1.5’te belirtilmiştir.

![Şekil 6.1.5 HOG ve SVM Uygulandıktan Sonra Elde Edilen Doğru Çıktı](image)

6.2 2D Lidar Kullanarak Bariyer Kontrolü ve PID ile Sürüş

Teknofest’in bizlere sağladığı güvenlik bariyerleri, aracın doğru rotada gittiğini tayet etmek için oldukça önemli bir referanstır. Araçta 2D lidar olan RPliidar A3 modeli kullanılmaktadır. 360 derece 2 boyutta tarama yapan RPliidar A3’te, aracın önündeki 180 derecelik kısmın algoritmalarımızda kullanılması planlanmıştır. Bu 180 derecelik kısımdaki uzaklık verileri 3 bölgeye incelenmektedir:

- 0 ile 80 derecelik kısımdaki uzaklık verileri Sağ Bölge;
- 80 ile 100 derecelik kısımdaki uzaklık verisi Ön Bölge;
- 100 ile 180 derecelik kısımdaki uzaklık verisi ise Sol Bölge olarak ele alınmıştır. (Şekil 6.2.5)

Aracımız bu bölgelere göre yürütülmektedir. Araç, bu bölgelerle olan uzaklığına ve YOLOv3 modelden aldığımız trafik levhasına göre rota oluşturmaktadır.
Şekil 6.2. Simülasyonda Lidar Çıktısı Üzerinde Uygulanan Hayali Duvar Yapı

Şekil 6.2.2 Simülasyonda Lidar Çıktısı Üzerinde Uygulanan Hayali Duvar Yapı
Eğer aracın düz gitmesi gerekiyorsa araç, sağındaki ve solundaki Bölgelere göre gelen uzaklık verisi ortalamasında 1,5 metreden büyük olan verileri 1,5 metreye eşitleyecektir:

\[F = \begin{cases} K = 1.5, & K > 1.5 \\ L = 1.5, & L > 1.5 \end{cases} \]

Eğer aracın sağa dönüşmesi gerekiyorsa sağ taraftaki verilere hiçbir işlem yapmayıp, Sol Bölge’nin verisinde 1,5 metreden büyük olan verileri 1,5 metreye eşitleyecektir:

\[F = \begin{cases} K = 1.5, & K > 1.5 \\ L, & L > 1.5 \end{cases} \]

Eğer aracın sola dönüşmesi gerekiyorsa sol taraftaki verilere hiçbir işlem yapmayıp, Sağ Bölge’nin verisinde 1,5 metreden büyük olan verileri 1,5 metreye eşitleyecektir:

\[F = \begin{cases} K, & K > 1.5 \\ L = 1.5, & L > 1.5 \end{cases} \]

Bu bölgeler üzerinde yapılan işlemlerden sonra aracın sürüşünü gerçekleştirmesi ve direksiyon açısı üretimine geliştirilmiş PID algoritması ile sağlanmaktadır. Araçın bariyer uzaklıklarının farklarına bakıp sabit bir direksiyon açısı ile sürüş gerçekleştirmesi durumunda aracın salınımları beklenmektedir. Bu durumun önüne geçmek için yukarıda bahsedilen PID algoritması üzerinde oynamalar yapılarak sürüş için uygulanmıştır.

Geliştirilen bu PID kontrolcüsinde anlık(P), eski(I) ve gelecek(D) hataları hesaba katarak oluşturulan denklemde özgün olarak direksiyon açısı parametresi eklenmiştir. Bu durum virajlarda ya da beklenmedik bir objenin aracın yoluna çıkması gibi ani dönüşler gerektiren durumlarda araçın gidişim istenen direksiyon açısından ne kadar uzaksak hata değerinin bir o kadar fazla olması sağlanmaktadır ve artan hatayi telafi etmek isteyen algoritma daha yüksek ve doğru dönüş açıları üretmektedir. Şekil 6.2.3 te Python kodlama dilinde oluşan PID formülasyonuna ulaşılabilir.

- Sistemimizin kullanabilirlik ve geliştirilebilirliğini artırmak için PID mekanizmamız bir obje olarak tanımlanmıştır.
Şekil 6.2.4 Python Dili Üzerinde PID Hesaplanması

6.3 Karar Verme Algoritması
Aracımızın karar Rotasını nereye yönelteceği sorusunun cevabı YOLOv3 modelinden gelen çıktıya bağlıdır.

PID ALGORİTMA ANALİZİ
✓ Anlık hataya ek olarak direksiyon açısı (-1 ile 1 arasında) sisteme parametre olarak eklenir ve Proportional hata (anlık) değeri güncellenir. (2-3. satırlar).
✓ Integral hatasını (geçmiş) her aşamada eklenerek güncellenir. (5. satır).
✓ Derivative hatasını (gelecek) her aşamada bir önceki aşamanın hatası ile kıyaslayarak güncellenir ve geçmiş hata (prev_cte) değeri güncellenir. (7-8. satırlar)
✓ Kontrol ünitesine Kp, Ki ve Kd değerlerini kullanarak direksiyon açısı hesaplanır. (10-14. satırlar)
✓ Araç direksiyonunun fiziksel limitlerden fazla dönüp mekanik sistemlere zarar vermesini engellemek adına direksiyon açısını 45 derece ile limitlenir.
Şekil 6.3 Karar Verme Algoritması Görselleştirilmesi

Yukarıdaki şema, aracın hareket algoritmasını göstermektedir. Araç hangi trafik işaretini levhasına göre nasıl hareket edeceğini, şemadaki eylemlere göre karar verip uygulayacaktır. Aynı zamanda YOLOv3 modelinden gelen yanlış veri olma ihtimaline karşıın algoritmanız son gelen veri 16’lık buffer halinde tutulmaktadır ve bunun sonucunda yanlış levha tanınması olsa bile buffer’da tutulan en çok miktara sahip olan tabelalar dikkate alıcığı için aracın yanlış algoritma çalıştırmasının önüne geçilmiş olacaktır.
6.4 Şerit Takip Sistemi

Şerit takip sistemi ile amacımız, öğrenme modeli oluşturmadan uygun matematiksel parametreler kullanarak direksiyon açısı çıktısı elde etmektir. Burada PYTHON üzerinde görüntü işlemek için OpenCV kütüphanesi kullanılmıştır. ROS üzerinde çalıştırılması için ise YOLOv3 modelinde kullandığımız CV_BRIDGE kullanılacaktır. OpenCV ile resim ön işleme aşamalarımız ise şöyledir:
- Resim üzerinde Gri Ölçekleme (Gray Scale) işlemi yapılır.
- Gauss Bulanıklığı (Gaussian Blur) tekniği uygulanır. Böylece görsel üzerindeki kenarlar yumuşatılır ve gürültü (noise) azaltılır.
- Canny Edge Detector ile görseldeki kenarlar belirlenir. Bu belirleme yapılırken resimdeki keskin parlaklık değişimleri kullanılır.

Şekil 6.4.1 Okulumuzda Çekilmiş Resim ile Ön İşleme Örneği

- Şerit için görüş bölgesi (Region of Interest) belirlenir. Böylece görsel, kameranın şerit üzerinde elde ettiği görüntü dışındaki kenarlardan arındırılır.

Şekil 6.4.2 Region of Interest Gösterimi

Görsel ön işleme sonucunda ise şeritleri bulma ve bulunan şerit alanını çizdirme işlemi gelir.
- Şekil 6.4.2’de gösterilen bölgeyi 2 Boyutlu düzlemde kuş bakışı görünümue (Şekil 6.4.3) dönüştürmek için, Perspective Transform metodu kullanılır.

![Şekil 6.4.3 Perspektif Dönüşümü Yapılmış Görüntü](image)

i. Daha sonra bu görüntü üzerindeki şerit çizgilerinin oluşturacağı en uygun eğri NumPy yardımcıyla belirlenip, OpenCV üzerinden alınan görüntüyle birleştirilir. Daha sonrasında ise perspektif dönüşümü yapılan görsel un warp işlemi uygulanarak eski haline döndürilir.

iv. Direksiyon açısını hesaplamak için de burada elde ettğiniz Şeriden Eğrilik yarıçapını kullanmaktayız. Eğrilik ile yarıçap arasındaki dönüşümü sağlayan formül ise şu şekildedir:

\[
\text{Direksiyon Açısı} \times \text{Şeriden Eğrilik Yarıçapı} = \frac{18000}{\pi}
\]

Şerit takibi algoritması LGSVL simülasyon ortamında ROS kullanılarak denenmiş olup üretilen direksiyon açısı ile test araçları simülasyon ortamı içerisinde başarılı bir sürüş elde etmişlerdir. (Şekil 6.4.4)
7. Özgün Bileşenler

7.1 Kendi Tasarımımız Tekerlik İçi Motor

7.1.1 Motor Seçiminin Yapılması

7.1.2 Tasarım Kısıtlamalarının Belirlenmesi

Tasarlanacak olan motor diferansiyel sistemindeki dişlilerden meydana gelen sürtünme kayıplarını azaltması nedeniyle tekerlek içi (hub) bir yapida tasarlanacaktır. Bu nedenle motorun, tekerlek çapının ve hacminin bir sınırı bulunmaktadır. Bu sınır değerleri çapın 340 mm ve motor uzunluğunun (genişliğinin) 40 mm olmasıdır. Bu hacimsel kısıtlama göz önünde bulundurularak tasarım gerçekleştirilmiştir.

Motorun mekaniksel olarak dar bir hacimde konumlandırılmasından dolayı sıvı soğutmalı bir motor yerine hava soğutmalı bir motor olarak tasarlanmasına karar verilmiştir. Üretici firma tarafından oluk doluluk oranının izin verilen değeri maksimum %45’tir. Kalıcı mıknatıslı senkron motorlar yüksek verimlilik ve yüksek güç yoğunlukları sayesinde piyasada tercih edilen makinalardır. Yarışın temel amacı verimlilik üzerine kurulu olduğu için motor veriminin nominal güçte %95’ten fazla olması hedeflenmektedir. Bununla beraber motor kütlesinin de 10kg’dan az olması ile projenin başarılı olarak değerlendirileceği düşünülmektedir. Burada bahsedilen hedefler piyasada bu amaca hizmet etmek için satılan motorların verileri incelenerek belirlenmiştir.

Motoru kontrol edecek olan sürücü devresinin de bazı limitleri bulunmaktadır. Araçtaki bataryanın nominal gerilimi 130V olduğu göz önüne alınarak motor sürücü çıkış geriliminin faz arası değerinin 94.5 V olarak belirlenir. Motor faz akımı ise maksimum 100A değerinde olmalıdır.

7.1.3 Motor Performans Değerlerinin Belirlenmesi

Araca ait bırtakım katsayıların belirlenmesi ile beraber aracın boylamsal modeli formüller kullanılarak oluşturulmuştur.

Aracın en çok seyrettiği hız 80 km/saat olarak belirlenmiştir. 80 km/saat sabit hızda motorun momenti 18.44 Nm ve gücü 1576 W olmalıdır. Bu değer tüm optimizasyonların yapılacağı referans noktası olarak alınmıştır. Bununla beraber araç %8 eğimde kalkış yapabilmesi için belirli bir moment değerini karşılayabilmelidir.

Motorun sahip olması gereken maksimum moment değeri de 63.4 Nm olarak hesaplanmıştır. Arabanın maksimum hızda (150km/h) motordan talep edeceğiz güç ve moment değerleri şöyledir:
Böylece motorun sahip olması istenen performans değerleri hesaplanmıştır.

7.1.4 Malzeme Seçimi

Artık manyetik yoğunluğu 1.1 T, enerji çarpanı 235 kJ / m³ ve curie sıcaklığı 120 ℃ olan mıknatıs fiyat / performans açısından ihtiyaç karşılamaktadır.
Stator demirinin akı geçirenliğin yüksek doyma akı yoğunluğunun yüksek ve maliyetinin az olması istenir. Üretici firmanın izin verdiği malzemeler arasında bu özellikleri en iyi karşılayan stator sacının M270-35A olduğuuna karar verilmiştir.

M270 elektriksel çeliğinin 0.35mm kalınığındaki lamine saclardan bir araya getirilmesi ile stator üretimi tamamlanacaktır. Bu malzemenin doyma akı yoğunluğu 1.8 T değerindedir.
7.1.5 Analitik Hesaplamaların Yapılması

Malzeme seçiminin de belirlenmesinin ardından analitik hesaplamalar yapılarak motor temel geometrisine kavuşturulmalıdır.

Oluk ve kutup sayılarının okekinin yüksek değerde olması motorun cogging momentinin az olmasını sağlamaktadır.

Motorun sargı şemasının periyodik olması sayesinde motorun sadece belirli bir kesiti analiz edilebileceği için analiz süresi kısalacaktır ve daha dar optimizasyon aralıklarının kullanılması sayesinde daha iyi bir tasarım gerçekleşme olasılığı artacaktır.

Tüm bu kriterler göz önünde bulundurularak 22 kutup ve 24 oluk konfigürasyonun neredeyse tüm ihtiyaçlara iyi bir cevap olduğu belirlenmiştir.

Öncelikle motorun hava aralığındaki birim hacminden alabileceği moment değeri (TRV) belirlenmelidir. Tabloda görüldüğü üzere sinterlenmiş NdFeB mıknatısına sahip bir motorun TRV değeri 14 - 42 kNm/m³ arasında olmalıdır.
N30H mıknatısları ve M270-35A çekirdeğinin kullanılan bir analiz çalışmasında bu değerin bu uygulama için 35 kNm / m³ olması gerektiğini saptanmıştır.

Motorun maksimum moment değerini 63,4 Nm olarak hesaplamıştık. TRV = 35 kNm / m³ ise $D^2L = 2,3 \times 10^{-3}$ m² olarak hesaplanır.
D= Stator çapı
L= Motor uzunluğu
D ve L belirlenmesinde $\lambda = L/\tau_p$ ($\tau_p = \pi D/2p$, ‘τ_p’ kutup adımı, ‘p’ kutup çifti sayısı) oranından faydalanılır. ‘λ’ için aşağıda verilen aralıklardan yararlanılabilir.
Genel olarak iyi bir tasarım için $\lambda = 1,0 – 1,1$ alınması önerilmektedir.
Tasarımdaki ana hedef yüksek verim olduğu için $\lambda = 1$ olarak alınmıştır. Bu durumda
$L = \lambda \times \tau_p$ = τ_p
$D = \tau_p \times 2p / \pi = \tau_p \times 22 / \pi$
$D^2L = 2,3 \times 10^{-3}$ m²
Bu üç denklemin çözülmesiyle $\tau_p = 0,036$ ve buradan da $D = 252$ mm ; $L = 36$ mm olarak hesaplanmıştır.
Araçın maksimum hızını 150 km/saat olacağı belirtilmişti. Bu durumda motor hızı 1423 d/dk olması gerekiyordu, motor frekansı:
$f = p*n /60 = 11 \times 1423$ d/dk / 60 = 260,88 Hz
Hava aralığı aki yoğunluğu bu mıknatıs için 0.85 Tesla olarak kabul edilebilir.
Motor sürücünün maksimum faz arası çikış geriliminin 94.5 V olduğu belirtildiği. Motorun faz nötr gerilimi buradan;
$\text{Vrms} = 94,5 / \sqrt{2} = 54,27$ Volt
Kutup başına aki : $2 / \pi \times B_g \times \tau_p \times L = 2 / \pi \times 0.85 \times 0.036 \times 0.036 = 7,01 \times 10^{-4}$ Maxwell
Faz başına sarım sayısı : $w_a = E / (2\pi / 20.5 \cdot kw \cdot 1 \cdot f \cdot \phi)$
$w_a = 54,27 / (4,44 \times 0,949 \times 260,88 \times 7,01 \times 10^{-4}) = 70,43$
Toplam iletken sayısı: $Z = 2 \cdot m \cdot w_a = 2 \times 3 \times 70,43 = 422,57$
Oluk başına iletken sayısı : $z_0 = Z / N_S = 422,57 / 24 = 17,6$
Buradan oluk başına bulunan iletken sayısı 18 olarak alınır. Çift katmanlı sargı kullanıldığı için sarım sayısı 9 olarak hesaplanır.
Sarım sayısı yakın bir değere yuvarlandığı için hava aralığındaki aki yoğunluğunun yeni değeri hesaplanmalıdır:
$B_g = 0.85 \times 18 / 17,6 = 0,869$ T
Bu adımdan sonra motor sargısının iletken çapı belirlenmelidir.
Motorun sargılarının hava ile direkt teması olması planlanmaktadır. Motorun maksimum performansta çalışırken akım yoğunluğu 6A/mm² belirlenmiştir. Bataryadan maksimum 6,8 kW güç çekileceği hesaplanmıştır. Güvenlik payı bırakarak motorun 10kW güç çektği durum göz önüne alınarak hesaplama yapılmıştır. Motorun maksimum çalışma koşullarındaki veriminin %90 olduğu kabulüyle faz akımı:
Faz akımı \(I_f \) = 10000 / (0,9 * 3 * 54,27) = 68 A
\(J = 6A/mm² \) için;
\(q = 68 / 6 = 11,33 \text{ mm}² \)
Bu kesitteki bir bakır tel büklemeyeceği için paralel kollarara ayrılmış bakıların kullanılması gerekmektedir. 1,2mm çapında 10 adet bakırın paralel bağlanmasıyla aynı kesitteki bakır kesiti elde edilmektedir.

Oluğ doluluk oranının %45 olması gerektiği göz önüne alınarak gerekli oluk alanı hesaplanır:
\(A_{sl} = 11,33* 20 / 0,45 = 503,55 \text{ mm}² \)
Motorun Oluk Adımı:
\(\tau_0 = \pi * D /Ns = 3,14 * 252 / 24 = 32,97 \text{ mm} \)
Stator dişlerinde M270 saccın veri sayfasına bakıldığında 1.7T akı yoğunluğunun sağlanması için gerekli diş genişliği :
\(b_d = \tau_0/(k_{fe} * B_d) * B_g = 32,97 / (0,95 * 1,7) * 0,869 = 17,64 \text{ mm} \)
Burada bulunan \(k_{fe} \) değeri istiflenme faktörüdür ve örnek çalışmalardan 0,95 olarak alınmıştır. Oluk üst genişliği :
\(b_0 = \tau_0 - b_d = 32,97 – 17,64 = 15,33 \text{ mm} \)
Gerekli oluk alanı 503,55 mm² olarak hesaplanmıştı oluk genişliği de hesaplandığına göre oluk yüksekliği hesaplanabilir :
\(h_0 = 503,55 / 15,33 = 32,84 \text{ mm} \)
Hesaplanan oluk yüksekliği tam olarak doğru değeri vermeyecektir, çünkü paralel diş yapısı kullanılacağı için oluk genişliği her yerde aynı değerde olmayacaktır. Bu değer çizim yapılırken güncellenecektir.

Boyunduruk akısı kutup akısından yarısındanır. Boyunduruktaki akı yoğunluğu da 1.5T alınarak boyunduruk genişliği hesaplanır:
\(h_b = \tau p / (2 * k_{fe} * B_b) * B_g = 0,036 / (2* 0,95* 1,5) * 0,869 = 11\text{ mm} \)
Stator iç çapı :
\(D_i = D – 2* h_o – 2* h_b = 252 – 2*32,84 – 2*11 = 164,32 \text{ mm} \)
Stator iç çap değeri hesaplanan değerden degerden biraz daha küçük olacaktır. Bunun nedeni diş başlarının düz değil de geniş olmasından kaynaklanmaktadır. Bu tercih virutu momento optimizasyonun yapılamasyla tekrar ele alınacaktır.

Hava aralığının belirlenmesi:
\(\& = 0,2 + 2* (D*L)0.5 = 0,2 + 2*(0,252 * 0,036)0.5 = 0,39 \text{ mm} \)
Mekanik titreşim, mekanik zorlanma ve güvenlik payı da hesaba katılarak hava aralığının 1mm alınması uygun görülmüştür.

Mıknatıs kalınlığı bu güçteki bir motor olarak 5mm ve mıknatıs yayının kutup adımına oranı %85 kabul edilmiştir. Mıknatıs yay uzunluğu ve mıknatıs kalınlığı sayısal analiz sonucuna göre tekrar optimize edilecektir.

Rotor dış çapı :
\(D_0 = D + 2*g + 2*d_{mag} +2*h_b = 252 + 2*1 + 2 * 5 + 2 * 11 = 284\text{ mm} \)
Böylelikle motorun ana boyutlandırması ve gerekli hesaplar tamamlanarak bir başlangıç çizimi elde edilir.

7.1.6 Motorun Maxwell Üzerinde Modellenmesi

Elde edilen motor RMxpert programından Maxwell programına gönderilerek analize hazır hale getirilmelidir.
Rotor sırt demiri ve mıknatıslarına hız referansı verilmiştir.
Rotor sırt demirine sınır koşulu atanarak sırt demirinin dış çeperine “Vector Potential =0” değeri kaydedilmiştir. Bu sayede motor dışında akı olmayacağının ve analiz geometrisinin sınırlandırıldığı bir ortam hazırlanmıştır.
Üç faz akımı birbirlerinden 120’şer derece faz farklıyla frekansın dolayısıyla hızın bir fonksiyonu olarak modele kaydedilmiştir.
Faz akımları denklemi:
A fazı: \(I_p \sin(2\pi \times \frac{30}{\pi} \times \frac{Velocity}{60} \times Time) \)
B fazı: \(I_p \sin(2\pi \times \frac{30}{\pi} \times \frac{Velocity}{60} \times Time - \frac{2\pi}{3}) \)
C fazı: \(I_p \sin(2\pi \times \frac{30}{\pi} \times \frac{Velocity}{60} \times Time + \frac{2\pi}{3}) \)
Modelde yarım simetri bulunduğu için model ikiye bölünerek “master” ve “slave” olarak sınır koşulları belirlenmiştir.
Motorun hava aralığına segmentli çemberler çizilerek mesh’lerin atanacağı yerler belirlenmiştir ve mesh çizdirilmiştir.

Böylece motor analize hazır hale getirilmiştir.
7.1.7 Sonlu Elemanlar Analizi ile Optimizasyon Yapılması

Motor uzunluğunun gücü bağlı olarak değişimi de hesaba katılarak motor uzunluğu 26mm seçilmiştir.

Analiz sonucunda en uygun değerlerin:
Mıknatıs kalınlığı : 4mm
Hs0 : 2.1mm
Bs0 : 3.3mm
Motordaki diş kalınlıkları ve boyunduruk kalınlığı da analizlerden akı dağılımasına bakılarak parametrik analiz sonucunda son değerlerine ulaştırılmıştır.
Optimizasyonlar sonucunda elde edilen motor şu şekildedir:

Motor Akı Çizgileri:

Motor içerisindeki akı çizgilerine bakıldığında olması gerekeni gibi bir yol izlediği görülmüştür. Diş başları arasında kaçak akıların oluşmadığı / çok az miktarda olduğu görülmektedir.
Motorun Nominal Güçteki Ağı Dağılımı:

Görüldüğü gibi herhangi bir yerde doymaya gidilmemistir. Motorun bu güçteki bara akımı 23.3A olduğu hesaplanmıştır.

Vuruntu Momenti:

Cogging moment, ortalama moment değerinin %4.4'ünü oluşturmaktadır. Literatürde, bu değerin %15'in altında olması harmonik içeriğinin az olduğunu işaret etti. Bu sayede araba moment titreşimlerine maruz kalmdan konforlu bir şekilde yol alabilecektir.

Yüksek Hızdaki Motor Performansı:
Motor hızının ve momentinin artmasıyla beraber motordaki demir akı yoğunluğu artmıştır ancak malzemenin maksimum değeri aşılamağı için bir problem oluşmayacaktır.

Motorun zamana bağlı olarak verim grafiği:

Motor verimi 1140 dpm(d/dk) ve 32 Nm 'de %97'dir. Nominal güçteki motor verimi %96 olarak elde edilmiştir. Böylece motorun sayisal analizleri de tamamlanmıştır.

7.1.8 Isıl Hesaplamaların Yapılması

Sıcaklık değişimi = Güç kaybı / (Yüzey alanı *İşı Transfer katsayısı)

Güç kaynağı analizlerden elde edilmiştir ve yüzey alanı da Maxwell çizimi üzerinden belirlenmiştir.

Farklı rüzgar hızlarında ısı transfer katsayısı ilgili maddenin şu şekilde alınmıştır:

Yapılan hesaplama sonucu sargı sıcaklığı maksimum 98 ℃ ve stator demirinin sıcaklığı maksimum 58 ℃ ulaşmıştır.

7.1.9 Sensör Bağlantılarının Belirlenmesi

Örnek motorlar incelenerek en doğru sonucun hava aralığına paralel olarak yerleştirilmiş sensörlerin en hassas ölçümü yapacağı düşünülmüştür. Bu nedenle birbirlerinden mekaniksel olarak 360 / 11 = 32,72 derece aralıklı olarak yerleştirilmiş hall sensörleri ilgili dişlerde boşaltmalar yapılarak yerleştirilmesi uygun görülmüştür.
Maxwell’de çizimi tamamlanan motor AutoCad programına aktarılıarak sensörlerin geleceği yerler çizilmiştir.
7.1.10 Motorun Üretimi ve Sonuç

Şekil 7.1.1 Üretilen Motorun Rotoru

Şekil 7.1.2 Üretilen Motorun Statoru

Şekil 7.1.3 Stator ve Rotor'un Birleşip Oluşturduğu Motor
Bu projede güneş arabası ekibinin tekerlek içi radyal akılı miknatıslı senkron motorunun tasarıımı yapılmıştır. Motor kısıtlarının belirlenmesi ile beraber güç değerleri hesaplanmıştır, analitik hesaplamalar yapılarak sayısal analize ön ayak olması sağlanmıştır. Motorun sayısal analizlerle optimizasyonu yapılmıştır. Elde edilen motorun ısı analizleri ve sensör bağlantılı planlanarak tasarım tamamlanmıştır. Tasarımından önce hedeflenen %95 üzerindeki verim ve 10 kg’ın altındaki kütle hedeflerine ulaşılmıştır. Motorun düz yolda nominal hızdaki verimi %96 yüksek hızdaki verimi %97 ve motor kütleşi 9,4 kg olarak elde edilmiştir.

7.2 Batarya

Tasarım yapılırken Solidworks, Siemens Solid Edge, Zortrax Z-Suite, AutoCAD, Altium Designer gibi proglamlardan yararlanmıştır. [19]

![Şekil 7.2.1 Tasarlanacak Batarya Paketinin Genel Şematik Gösterimi](image)

Elektriksel anlamda batarya kutusunun içinde hücrelerin gerilim, akım, sıcaklık ve dengeleme akımları gibi parametrelerini sürekli izleyen ve yöneten Batarya Yönetim Sistemi (BYS) devreleri, araç içindeki devreleri 12V ile beslemek için gerekli olan anahtarlama güç kaynağı, ani yüksek akımı engellemek için ön şarj devresi ve direnci, güvenlik için sigorta ve anahtarlara, galvanik izolasyon için kontakör, anahtarlara ve devreleri yönetmek için güç röleleri, haberleşme için CAN hattı ve soğutma için fanlar yer almaktadır. Mekanik olarak ise modülleri elektriksel olarak yalıtmak ve herhangi bir kısa devre durumunda yangın riskini en aza indirmek için EVA köpük (polivinil asetat) kullanılmış, modüllerdeki baralarda ise hafifletme amaçlı
boşaltmalar yapılmıştır.

Yüksek enerji yoğunluğu özelliklerinden dolayı 18650 tipi silindirik lityum iyon hücrelerin kullanılmamasına karar verilmiştir. Aşağıda piyasada bulunan popüler 18650 pillerin karşılaştırma tablosu verilmiştir.

<table>
<thead>
<tr>
<th>Hücresel</th>
<th>Nominal Kapasite</th>
<th>Nominal Gerilim</th>
<th>Standart Şarj</th>
<th>Max Şarj</th>
<th>Standart Deşarj</th>
<th>Max Deşarj</th>
<th>Ağırlık</th>
<th>Skalak</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG INR 18650 M6T</td>
<td>3400 mAh</td>
<td>3.63V</td>
<td>0.3C (1000 mA)</td>
<td>0.7C (2330 mA)</td>
<td>0.2C (660 mA)</td>
<td>1.5C (5000 mA)</td>
<td>48.2 g</td>
<td>-20,+60</td>
</tr>
<tr>
<td>LG INR 18650 MH1</td>
<td>3200 mAh</td>
<td>3.63V</td>
<td>0.5C (1550 mA)</td>
<td>1C (3100 mA)</td>
<td>0.2C (620 mA)</td>
<td>10A</td>
<td>49g</td>
<td>-20,+60</td>
</tr>
<tr>
<td>LG INR 18650 MJ1</td>
<td>3500 mAh</td>
<td>3.63V</td>
<td>0.5C (1700 mA)</td>
<td>1C (3400 mA)</td>
<td>0.2C (680 mA)</td>
<td>10A</td>
<td>49g</td>
<td>-20,+60</td>
</tr>
<tr>
<td>Panasonic/Sanyo NCR 18650 B</td>
<td>3350 mAh</td>
<td>3.6V</td>
<td>0.5C (1625 mA)</td>
<td>0.5C (1625 mA)</td>
<td>-</td>
<td>4.87A</td>
<td>47.5 g</td>
<td>-20,+60</td>
</tr>
<tr>
<td>Panasonic/Sanyo NCR 18650 BF</td>
<td>3350 mAh</td>
<td>3.6V</td>
<td>0.5C (1625 mA)</td>
<td>0.5C (1625 mA)</td>
<td>-</td>
<td>4.88A</td>
<td>46.5 g</td>
<td>-20,+60</td>
</tr>
<tr>
<td>Panasonic/Sanyo NCR 18650 G</td>
<td>3550 mAh</td>
<td>3.6V</td>
<td>0.3C (1000 mA)</td>
<td>-</td>
<td>-</td>
<td>8A</td>
<td>48g</td>
<td>-20,+60</td>
</tr>
<tr>
<td>Panasonic/Sanyo NCR 18650 GA</td>
<td>3450 mAh</td>
<td>3.6V</td>
<td>0.5C (1475 mA)</td>
<td>-</td>
<td>-</td>
<td>10A</td>
<td>48g</td>
<td>-20,+60</td>
</tr>
<tr>
<td>Samsung ICR 18650 32A</td>
<td>3200 mAh</td>
<td>3.75V</td>
<td>0.5C (1600mA)</td>
<td>1C (3200mA)</td>
<td>-</td>
<td>6.4A</td>
<td>50g</td>
<td>-20,+60</td>
</tr>
<tr>
<td>Samsung INR 18650 35E</td>
<td>3550 mAh</td>
<td>3.6V</td>
<td>0.5V (1700mA)</td>
<td>0.6C (2000mA)</td>
<td>-</td>
<td>8A</td>
<td>50g</td>
<td>-20,+60</td>
</tr>
<tr>
<td>Sony US18650VC7</td>
<td>3500 mAh</td>
<td>3.6V</td>
<td>0.3C (1000mA)</td>
<td>-</td>
<td>-</td>
<td>8A</td>
<td>49g</td>
<td>-20,+60</td>
</tr>
</tbody>
</table>

Şekil 7.2.2 18650 tipi lityum iyon pillerin karşılaştırma tablosu

Literatür taraması yapıldıktan sonra kapasite, enerji yoğunluğu, maksimum şarj ve deşarj akımı gibi ön çıkarılan özelliklerinden dolayı LG Chem INR 18650 MJ1 pili kullanılmaya karar verilmiştir.

<table>
<thead>
<tr>
<th>No</th>
<th>Elektriksel Özellikler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enerji</td>
</tr>
<tr>
<td>2.</td>
<td>Nominal Gerilim</td>
</tr>
<tr>
<td>3.</td>
<td>Normal Şarj (Refer to 4.1.1)</td>
</tr>
<tr>
<td>4.</td>
<td>Normal Deşarj</td>
</tr>
<tr>
<td>5.</td>
<td>Max Şarj Akımı</td>
</tr>
<tr>
<td>6.</td>
<td>Max Deşarj Akımı</td>
</tr>
<tr>
<td>7.</td>
<td>Deşarj Fasesi (Refer to 4.1.2)</td>
</tr>
<tr>
<td>8.</td>
<td>Yüzölçümü</td>
</tr>
<tr>
<td>9.</td>
<td>İşletme Değeri (for shipping state)</td>
</tr>
</tbody>
</table>

Şekil 7.2.3 LG MJ1 Pilinin Veri Föyündeki Elektriksel Özellikler Tablosu

Batarya paketinin gerilimini artırmak için hücreler seri, akım kapasitesini artırmak için
de paralel bağlanabilir. Bu bağlamda 36 seri ve 12 paralel konfigürasyonunda bir batarya paketi oluşturulmuştur.

![Batarya Modülü Tasarım Örnekleri](image)

Şekil 7.2.4 Devam Etmekte Olan Batarya Modülü Tasarım Örnekleri

Modüllerin üzerinde, kullanacağızımız batarya yönetim sistemi (BYS)'ın her seri gruptan veri almasını sağlayan devreleri yer almaktadır. Bu devreler bağlı oldukları serilerin akım, gerilim ve sıcaklık değerlerini okuyup, gerektiğinde üzerindeki taş direnç ile gerilim dengeleme işlemini gerçekleştirmekte ve aynı zamanda da diğer devreler ile de haberleşmektedir.

Pilleri bir arada tutan tutucu parçalar 3D baskı yöntemiyiile bastırılmıştır. Bunun için hafiflik, dayanıklılık ve sıcaklığa dayanıklık gibi faktörler göze alınarak ABS filament tercih edilmiştir.
Şekil 7.2.7 Batarya Paketinin Haberleşme ve Kontrol Bağlantıları

Galvanik izolasyon amacı ile kontakör, araçtaki devrelerin çalışması için gerekli olan 12V dağıtımını sağlayan anahtarlama güç kaynağı, anahtarlama işlemlerini gerçekleştiren röleler, Batarya Yönetim Sistemi devreleri, olası akım kaçaklarını önlemek için sigorta, ön şarj devresi ve direnci, hava soğutma için fanlar ve elektriksel yalıtım için EVA köpük levha kullanılmış ve piller ile aynı kutu içerisinde muhafaza edilmiştir.
Batarya kutusu içinde bulunacak olan bileşenlerin yerleri, birbirlerine göre konumları ve sabitleme şekilleri üzerine denemeler yapmıştır. Bu yerleşimler kablo kargaşasını en aza indirgemek ve soğutma için düzgün hava akışını sağlamak için yapılmıştır. Ayrıca BYS devrelerinin pil terminalerine bağlı olan kabloları gürültü ve gerilim düşümünü engellemek için mümkün olduğuna kısa olmalıdır.

7.3 Direksiyon Devresi

Ekibimizin tasarımı olan direksiyon devresine aşağıdaki Şekil ve açıklamalarından ulaşılabilir.
Direksiyon Devresi kartında bulunan temel komponentler şunlardır:
- STM32F412 Mikrokontrolcü [1]
- Üç Karakterli 7 Segment [2]
- LM2672 3.3V Regülatör [3]
- SN65HVD230 CAN Transceiver Entegresi [4]
- CD74HC4511 BCD to 7 Segment Dekoder [5]
- Rejeneratif fren potunun girişi [6]
- Gaz potunun girişi [7]

Bu devrenin görevi aldığı girdilerle aracın kontrolünü sağlamaktır. Bu görevin gerçekleştirilmesi için devre üzerinde iki adet analog-sayısal dönüştürücü girişü bulunmaktadır. Bu girişlere bağlı olan ve mekanik olarak direksiyonun iki yanında bulunan kulakçıklara bağlı
olan iki adet potansiyometre bulunmaktadır. Bu potansiyometrelerden sağ tarafta bulunanı araca sürücü tarafından verilecek olan gaz miktarını belirlemekte, sol tarafta bulunanı ise aracın rejeneratif fren oranını belirlemektedir.

Potansiyometrelerin gerilimlerini ölçerek kulakçıkların ne kadar hareket ettirdiğini belirleyen bu devre daha sonrasında kulakçıkların hareket oranına göre motorun ne kadar moment uygulaması gerektiğini veya ne oranda rejeneratif fren yapması gerektiğini hesaplar. Bu hesapların yapıldığı fonksiyonlar Şekil 7.3.2 ve Şekil 7.3.3’te verilmıştır. Bu hesaplara göre aracın tahrik motorunun kontrolünü sağlayan motor sürücü kartına CAN Bus hattı üzerinden gerekli komutları göndererek aracın elektronik gaz pedalı (pedal-by-wire) işlevselliğini sağlamaktadır.

```c
void AccPotControlTask(void)
{
    uint8_t counter;
    Analog.DataAccPotAnalogChannel = 0;

    for(counter = 0; counter < 5; counter++)
    {
        Analog.DataAccPotAnalogChannel += Analog.DataArrPotAnalogChannel[counter];
    }

    // Düzenlenen bölge
    Analog.DataAccPotAnalogChannel = Analog.DataAccPotAnalogChannel/5;
    Analog.DataAccPotAnalogChannel = 102 - ((Analog.DataAccPotAnalogChannel/1029)*555)+20;

    if(Analog.DataAccPotAnalogChannel < 2){ Analog.DataAccPotAnalogChannel = 0; }
    else if(Analog.DataAccPotAnalogChannel > 102){Analog.DataAccPotAnalogChannel = 102; }

    Analog.DataAccPotAnalogChannel = pow(Analog.DataAccPotAnalogChannel/102,2);
    Analog.DataAccPotAnalogChannel = Analog.DataAccPotAnalogChannel*102;
}
```

Şekil 7.3.2: Gaz kulakçığının hareket oranına göre gerekli gaz miktarını hesaplayan fonksiyon
Şekil 7.3.3: Rejeneratif fren kulakçığına göre fren oranı belirleyen fonksiyon

7.4 Direksiyon ve Fren Motor Sürücü Kartı
7.4.1 Direksiyon Motor Sürücü Kartı Donanımı

Kendi tasarımımız olan direksiyon sistemi – fren sistemi mekanizmasında kullanılacak olan DC motor sürücü kartımızın üzerinde şu komponentler bulunmaktadır:

- Bir adet “STM32F407” mikrokontrolcüsü [7]
- Bir adet “Debugger” girişi [5]
- Bir adet CANbus haberleşmesi için “SN6HVD232 CANbus Transceiver” entegresi [14]
- İki adet “BTS7960 Half Bridge” entegresi [6],
- Bir adet “Hall” sensörü girişi [1]
- Bir adet “Encoder” girişi [3]
- Bir adet “74HC244D Buffer” entegresi [8]
- Bir adet “Usb” girişi [4]
- Bir adet motor bağlantı klemensi [9]
- Bir adet 24 volt motor besleme girişi [15]
- Bir adet LM2672 3.3Volt Regülatör [16]
- Bir adet LM2672 5 Volt Regülatör [17]

DC Motor Sürücünün çalışma prensibi aşağıdaki gibidir:

Aşağıdaki görseller sürücümüzün devre şeması ve PCB tasarımıdır:
Şekil 7.4.1 Motor Sürücü Devre Şeması

Şekil 7.4.2 Motor Sürücü Baskı Devre Tasarımı

Motora bağlı olarak gelen bir encoder bulunur. Bu encoderden gelen sinyal, karttaki mikrokontrolcü tarafından okunur ve motorun hızı bilgisi alınmış olunur. Bu bilgiye göre motor istenilen hızda döndürülebilir.

Şekil 7.4.3 Üretilen Motor Sürücümüz ve Kullandığımız DC Motoru Görüntüsü
7.4.2 Direksiyon Motor Sürücü Kartı Yazılımı

Şekil 7.4.2.1 Mikrokontrolcü İşlemci Pin Haritası

Şekil 7.4.2.1’de görüldüğü üzere, gelen açı değerinde motoru döndürme, potansiyometre ve direksiyonun alt ve üst sınırlarına göre motoru frenleme gibi işlemlerin tümü için STM32F407 entegresinin 16 adet pini aktifleştirilmişdir.

Algoritma oluşturma kısmında KEIL-ARM programından yararlanılmaktadır. Öncelikle motorun sağlıklı bir şekilde hareketini sağlayabilecek adına yön ve hız gibi değişkenler oluşturulmuştur.
Şekil 7.4.2.2 Kodunuzda Kullanılan PID Parametreleri

CAN Bus hattından STM32F407 entegremize 3 adet bilgi gelmektedir. Bu bilgiler sürüş algoritmasındaki PID’nin bizlere sağlamış olduğu motorun hangi yöne döneceği, kaç derece döneceği ve hangi hızla döneceği bilgileridir.

```
/* Private define */
/* USER CODE BEGIN PD */
#define stop 0
#define full_duty 19
#define half_duty 9
#define quad_duty 4
#define CCW 0
#define CW 1
#define K1 100
#define K2 10
#define DIR_MaskBit 0x00000010
/* USER CODE END PD */
```

Şekil 7.4.2.3 CAN Bus Hattından Gelen Verileri Okuyan Kod Parçası

void CAN_Receive_Steering_MD(void)
{
 switch (RxHeader.StdId - Steering_MD_CAN_BASE)
 {
 case 0:
 canTempMess64.data_u8[0] = RX_Data[0];
 canTempMess64.data_u8[1] = RX_Data[1];
 canTempMess64.data_u8[2] = RX_Data[2];

 desired_pos = canTempMess64.data_u16[0];
 dir = canTempMess64.data_u8[2];
 desired_encpos = (uint16_t)(desired_pos * encoder_step);

 break;

 default:
 break;
 }
}

NOT: Direksiyon motoru üzerinde yapılan testler sonucunda gönderilen açı değerinin potansiyometre nin ve direksiyon dişlisinin sınır değerlerini aşması halinde kırılma durumu ortaya çıkmıştır. Bu problemin çözümü için direksiyon mekaniğinin her iki tarafının sınır bölgelerine fren butonları konulmuş olup direksiyon sınır değerine ulaştığında, yanı buton aktif edildiğinde motor tersi yönde dönme komutu alana kadar durma komutunu yerine getirecektir.
Böylelikle CAN Bus hattından gelen yön, açı ve hız değerleri kullanılarak direksiyon motoru için belirlediğimiz sınır değerleri arasında hareketini gerçekleştirebilmektedir.
7.4.3 Fren Motoru Kartı Yazılımı

Fren motoru kontrolünde, direksiyon motoru kontrolünde kullanılan yöntemler kullanılmıştır. CAN Bus hattından STM32F407 işlemcimize gelen “Frene Bas” ve “Fren Çek” komutlarına göre 24V DC motor hareket etmektedir.

➔ “Frene Bas” komutu işlemcimize geldiğinde:

```
// FRENE BAS
if ((dir == 0) && desired_encpos )
{
    //if(!conta) // enter just at the beginning
    //
    __HAL_TIM_SET_COMPARE(htim1, TIM_CHANNEL_2, desired_pos);
    __HAL_TIM_SET_COMPARE(htim1, TIM_CHANNEL_1, stop);
    if ( conta == SinirDegeri)
    {
        break;
    }
}
```

![Şekil 7.4.3.1 Fren Basmak İçin Yazılan Kod Parçası](image)

Kodları devreye girirken ve motor belirlienen sınır değerleri içerisinde dönüş hareketini gerçekleştirecek aracını durdurma işlemi gerçekleştirmektedir.

➔ “Fren Çek” komutu işlemcimize geldiğinde:

```
// FREN ÇEK
else if ((dir == 1) && desired_encpos )
{
    //if(!conta) // enter just at the beginning
    //
    __HAL_TIM_SET_COMPARE(htim1, TIM_CHANNEL_2, stop);
    __HAL_TIM_SET_COMPARE(htim1, TIM_CHANNEL_1, desired_pos);
    if( conta == 0)
    {
        break;
    }
}
```

![Şekil 7.4.3.2 Fren Çekmek İçin Yazılan Kod Parçası](image)

Kodları devreye girirken ve motor belirlienen sınır değerleri içerisinde dönüş hareketini gerçekleştirecek aracını tekrar harekete geçirme işlemini gerçekleştirmektedir.
7.5 GSM Devresi

GSM Kartımızda aşağıdaki komponentler bulunmaktadır:

- LM2672 5V Regülatör [1]
- LM2596ADJ Ayarlanabilir 3 Amper Regülatör [2]
- TJA1050 CANbus Transceiver [3]
- MCP2515 SPI – CAN Bus dönüştürücü [5]
- SIM800L GSM Modülü [9]
- UART programlama giriş [7]
- I2C Haberleşme giriş [8]
- Anten çıkışı [4]

ÇALIŞMA PRENSİBİ:

LM2672 regülatörü mikrokontrolcüyü, TJA1050 ve MCP2515 entegresini beslemek için kullanılır. Sistemden gelen CAN Bus sinyali TJA1050 entegresi tarafından alınır. Bu veri MCP2515 entegresi tarafından mikrokontrolcü tarafından okunabilmesi için SPI sinyaline dönüştürülür. SPI sinyalini alan mikrokontrolcü veriyi UART sinyaline dönüştürür ve bu veri SIM800L entegresi tarafından alınır. Bu veri ardından SIM800L modülü ile antene aktarılırak GSM sinyali olarak yayımlanır.

LM2596ADJ regülatörü, GSM modülinin anlık yüksek akım (2 Amper) ihtiyacının karşılanabilmesi için kullanılmıştır.
Aşağıdaki görsellerde devre şeması, PCB tasarımını ve kartın tamamlanmış halı bulunmaktadır:

Şekil 7.5.1 GSM Devre Şeması

Şekil 7.5.2 GSM Devresi Baskı Devre Tasarımı
Şekil 7.5.3 GSM Devresi Üretilmiş Hali
7.6 Telemetri Verici Kartı

LoRa Verici Kartımızda aşağıdaki komponentler bulunmaktadır:

- 868MHz için SMA Anten Çıkışı [1]
- 433MHz için SMA Anten Çıkışı[2]
- RN2483 Kablosuz Haberleşme Modülü[3]
- STM32F401CCU6 Mikrokontrolcü [4]
- USB tip B portu[5]
- LM1117 Regülatör [6]
- FT232R Entegresi [7]

LM1117 regülatörü mikrokontrolcüyü ve RN2483 kablosuz haberleşme modülünü beslemek için kullanılır. USB tip B portunda bilgisayardan USB haberleşme protokolü ile gelen veriler mikrokontrolcüye UART arayüzü ile aktarabilmek için FTR32 entegresi kullanılmıştır. FTR32 entegresi USB protokolü ile gelen sinyalleri UART arayüzüne çevirecek mikrokontrolcüye aktarır. FTR32 entegresi direkt olarak USB portundan gelen 5 volt ile beslenmektedir. Mikrokontrolcüye UART arayüzünden gelen komutlar doğrultusunda RN2483 kablosuz haberleşme modülüne farklı bir UART arayüz birimi tarafından komutlar aktarılır. RN2483 modülünün sunduğu 433 ve 868 MHz anten çıkışları için 2 adet SMA konektör konulmuştur. Yarışmada 868 MHz frekans bandı kullanılacak olup konektör çıkışına nominal 3 dbi kazançlı çok yönlü(omnidirectional) anten kullanılacaktır.
Şekil 7.6.1 Telemetri Verici Kartı Devre Şeması

Şekil 7.6.2 Telemetri Verici Kartı Baskı Devre Tasarımı
Şekil 7.6.3 Telemetri Verici Kartı Üretilmiş Halı
7.7 Telemetri Alıcı Kartı
Telemetri Kartımızda bulunan temel komponentler şunlardır:
- STM32F412RGT Mikrokontrolcü [1]
- SN65HVD230 CAN Transceiver Entegresi [2]
- LM2672 3.3V Regülatör [3]
- RN2483 Kablosuz Haberleşme Modülü [4]
- JTAG Debug Girişi [5]
- Telit SL869 GPS Modülü [6]
- MikroSD Kart Yuvası [7]
- 868 MHz için SMA Anten Çıkışı [8]
- 433MHz için SMA Anten Çıkışı [9]
- GPS için Anten Çıkışı [10]

7.8 Park Algoritması

Park tabelasının araca olan uzaklıği kameramız sayesinde hesaplanmaktadır (Şekil 7.8.1). Ayrıca aracın park algoritmasının çalışma anında olan konumuna göre nerede olduğu kameramız sayesinde takip edilmektedir. Kameradan aldığımız uzaklık verisi X,Y,Z
koordinatlarına ayrılmış bir şekildedir. Park algoritmamızda park tabelasının araç kamerasına olan yüksekliği önemli olmadığı için “x” koordinatı kullanılmamıştır. Aracın kamerasından aldığımız konum verileri de şekildeki gibidir. (Şekil 7.8.2).

Park algoritmamızda aracın ve park tabelasının konumundan yola çıkarak araç ve park alanı arasında bir rota oluşturulmaktadır. (Şekil 7.8.3)

Şekil 7.8.4 Eğri Üzerindeki Noktalardan Araca En Yakın Olan Noktanın Bulunması

Araçın konumu ve bulunan noktalar arasındaki fark hata olarak kabul edilip PID algoritmaya yollanır. Araçın bu şekilde oluşturulan eğriyi takip etmesi sağlanacaktır. Polyfit fonksiyonundan dolayı oluşabilecek sorunları önlemek için araç park çizgilerine yeterli uzaklığa geldiği zaman şerit takibi algoritması çalışacak ve araç park edecektir. (Şekil 7.8.5)

8. Güvenlik Önlemleri

8.1. Elektriksel Güvenlik Önlemleri

8.1.1. BYS Önlemleri

BYS devresi bataryadaki gerilim, akım ve sıcaklık verilerini devamlı izlemektedir. Bu değerler önceden belirlenen güvenli aralığın dışına çıktığı anda BYS kontaktörü kapataarak bataryadaki yüksek gerilimi aracdan ayırmaktadır. Seri gruplar arasında gerilim farklı oluşması durumunda da BYS pasif dengeleme yöntemi ile bu hücrelerin gerilimlerini aynı seviyeye getirmektedir.
8.1.2 Elektrik Tesisatı ve İzolasyon

8.1.3 Acil Durum Butonları

Araçın üzerinde, araç içinde ve batarya kutusunun üzerinde olmak üzere çeşitli yerlerde acil durum butonları yer almaktadır. Bu butonlar BYS devresinin kontaktör açma sinyali çıkışına seri şekilde bağlanmaktadır. Bu sayede butonlardan en az bir tanesi bile kapatıldığında kontaktör kapanmakta ve yüksek gerilim araçtan ayrılmaktadır.

8.2 Batarya Kutusu Özellikleri

Batarya kutusunun içinde pil hücreleri ve modüller bulunmaktadır. Pil hücrelerine temas edecek herhangi bir iletken malzeme, sistemin kısa devre yapmasına yol açabilir. Bu yüzden batarya malzemesi olarak seçeceğimiz malzemenin elektriksel olarak yalıtkan bir malzeme olması gerekir.

Batarya kutusunun toplam kütleinin minimum seviyede üretilmesiyle arabanın enerji verimi daha yüksek olacaktır. Bunun yanında arabanın çarpışma anında bataryanın zarar görmemesi için mukavemet de göz öne alınması gereken bir parametredir. Bundan dolayı batarya kutusunun üretiminde, minimum ağırlık ve maksimum mukavemet hedeflenmektedir.

9. Simülasyon ve Test

9.1 Simülasyon ortamı

Simülasyon ortamı olarak tam ROS kurulumu ile birlikte gelen GAZEBO simülasyon ortamı kullanılmıştır. Sürüş algoritmalarının Teknofest parkuru üzerinde testi için LGSVL gibi
simülatörlerin yerine GAZEBO’yı tercih etmemizin ana nedeni 2D lidar kullanacak olmamızdır [18]. Araç modeli olarak, elimizde bulunan sensörleri barındıran yanı sadece 2D lidar ve bir adet kamerya sahip, Ackermann mesaj tipiyle haberleşen bir araç kullanıldı. LGSVL simülasyon ortamını Teknofest Yarışması Parkuru için kullanılmamış olsa da şerit takibi çalışmalarını denemek için LGSVL sağladığı gerçekçilikten ötürü daha uygun görülmüştür.

9.2 Araç ve Bileşenleri Üzerinde Yapılan Testler

9.2.1 Kamera Testleri

Şekil 9.1.1 LGSVL Simülasyon Ortamı Üzerinde Teriş Takibi Testi

Şekil 9.2.1 YOLOv3 Ağından Alınan Yanlış Çıktı
Bu durumun önüne geçilerek için bölüm 6.1’de bahsedilen HOG ve SVM uygulanması bu karışığın önüne geçmiştir. Yapılan test veri seti üzerinde tam doğruluğa ulaşmış olduğu görülmüştür.

9.2.2 Logitech f710 Kontrolcüsü İle Yapılan Testler

9.2.3 Lidar ile 2 Taraflı Duvar Ortalama Testi

Aramızın şasisinin montajı bitip sürülebilir hale gelmesinden sonra aracın otonom olarak ürettiği direksiyon açısının araca uygun şekilde iletilip iletilmediği test edilmiştir. Bu testin sonucunda aracına 3D yazıcıdan PLA filament olarak alınan ve direksiyon sisteminde bulunan dişlilerden birinin kırdığı, dişli kırdılmadan önce ise aracın uygun direksiyon açısını motor ile tekerleklerere verebildiği görülmüştür. PID ile üretilen bu uygun direksiyon açısı sayesinde aracın başarılı bir şekilde viraj alabildiği görülmüştür.

![Şekil 9.2.3 Lidar ile Duvar Ortalama Testi](image1.jpg)

![Şekil 9.2.4 Lidar ile PID Sürüş Testi](image2.jpg)
10. Referanslar

[1] Introduction to the Controller Area Network (CAN),

[8] RPLidar A3 Datasheet,
https://www.generationrobots.com/media/LD310_SLAMTEC_rplidar_datasheet_A3M1_v1.0_en.pdf

[12] YOLOv3 Architecture Figure, https://www.researchgate.net/figure/The-YOLO-v3-architecture_fig1_341369179

TEKNOFEST
Havacılık, Uzay ve Teknoloji Festivali